This commit is contained in:
Nebel 2013-09-26 22:07:56 +09:00
parent eeb02bdd4f
commit 7a8c6154a9
7 changed files with 1171 additions and 0 deletions

View file

@ -0,0 +1,575 @@
/*
QTRSensors.cpp - Arduino library for using Pololu QTR reflectance
sensors and reflectance sensor arrays: QTR-1A, QTR-8A, QTR-1RC, and
QTR-8RC. The object used will determine the type of the sensor (either
QTR-xA or QTR-xRC). Then simply specify in the constructor which
Arduino I/O pins are connected to a QTR sensor, and the read() method
will obtain reflectance measurements for those sensors. Smaller sensor
values correspond to higher reflectance (e.g. white) while larger
sensor values correspond to lower reflectance (e.g. black or a void).
* QTRSensorsRC should be used for QTR-1RC and QTR-8RC sensors.
* QTRSensorsAnalog should be used for QTR-1A and QTR-8A sensors.
*/
/*
* Written by Ben Schmidel et al., October 4, 2010.
* Copyright (c) 2008-2012 Pololu Corporation. For more information, see
*
* http://www.pololu.com
* http://forum.pololu.com
* http://www.pololu.com/docs/0J19
*
* You may freely modify and share this code, as long as you keep this
* notice intact (including the two links above). Licensed under the
* Creative Commons BY-SA 3.0 license:
*
* http://creativecommons.org/licenses/by-sa/3.0/
*
* Disclaimer: To the extent permitted by law, Pololu provides this work
* without any warranty. It might be defective, in which case you agree
* to be responsible for all resulting costs and damages.
*/
#include <stdlib.h>
#include "QTRSensors.h"
#include <Arduino.h>
#define QTR_RC 0
#define QTR_A 1
// Base class data member initialization (called by derived class init())
void QTRSensors::init(unsigned char *pins, unsigned char numSensors,
unsigned char emitterPin, unsigned char type)
{
calibratedMinimumOn=0;
calibratedMaximumOn=0;
calibratedMinimumOff=0;
calibratedMaximumOff=0;
if (numSensors > QTR_MAX_SENSORS)
_numSensors = QTR_MAX_SENSORS;
else
_numSensors = numSensors;
if (_pins == 0)
{
_pins = (unsigned char*)malloc(sizeof(unsigned char)*_numSensors);
if (_pins == 0)
return;
}
unsigned char i;
for (i = 0; i < _numSensors; i++)
{
_pins[i] = pins[i];
}
_emitterPin = emitterPin;
_type = type;
}
// Reads the sensor values into an array. There *MUST* be space
// for as many values as there were sensors specified in the constructor.
// Example usage:
// unsigned int sensor_values[8];
// sensors.read(sensor_values);
// The values returned are a measure of the reflectance in abstract units,
// with higher values corresponding to lower reflectance (e.g. a black
// surface or a void).
void QTRSensors::read(unsigned int *sensor_values, unsigned char readMode)
{
unsigned int off_values[QTR_MAX_SENSORS];
unsigned char i;
if(readMode == QTR_EMITTERS_ON || readMode == QTR_EMITTERS_ON_AND_OFF)
emittersOn();
if (_type == QTR_RC)
{
((QTRSensorsRC*)this)->readPrivate(sensor_values);
emittersOff();
if(readMode == QTR_EMITTERS_ON_AND_OFF)
((QTRSensorsRC*)this)->readPrivate(off_values);
}
else
{
((QTRSensorsAnalog*)this)->readPrivate(sensor_values);
emittersOff();
if(readMode == QTR_EMITTERS_ON_AND_OFF)
((QTRSensorsAnalog*)this)->readPrivate(off_values);
}
if(readMode == QTR_EMITTERS_ON_AND_OFF)
{
for(i=0;i<_numSensors;i++)
{
sensor_values[i] += _maxValue - off_values[i];
}
}
}
// Turn the IR LEDs off and on. This is mainly for use by the
// read method, and calling these functions before or
// after the reading the sensors will have no effect on the
// readings, but you may wish to use these for testing purposes.
void QTRSensors::emittersOff()
{
if (_emitterPin == QTR_NO_EMITTER_PIN)
return;
pinMode(_emitterPin, OUTPUT);
digitalWrite(_emitterPin, LOW);
delayMicroseconds(200);
}
void QTRSensors::emittersOn()
{
if (_emitterPin == QTR_NO_EMITTER_PIN)
return;
pinMode(_emitterPin, OUTPUT);
digitalWrite(_emitterPin, HIGH);
delayMicroseconds(200);
}
// Resets the calibration.
void QTRSensors::resetCalibration()
{
unsigned char i;
for(i=0;i<_numSensors;i++)
{
if(calibratedMinimumOn)
calibratedMinimumOn[i] = _maxValue;
if(calibratedMinimumOff)
calibratedMinimumOff[i] = _maxValue;
if(calibratedMaximumOn)
calibratedMaximumOn[i] = 0;
if(calibratedMaximumOff)
calibratedMaximumOff[i] = 0;
}
}
// Reads the sensors 10 times and uses the results for
// calibration. The sensor values are not returned; instead, the
// maximum and minimum values found over time are stored internally
// and used for the readCalibrated() method.
void QTRSensors::calibrate(unsigned char readMode)
{
if(readMode == QTR_EMITTERS_ON_AND_OFF || readMode == QTR_EMITTERS_ON)
{
calibrateOnOrOff(&calibratedMinimumOn,
&calibratedMaximumOn,
QTR_EMITTERS_ON);
}
if(readMode == QTR_EMITTERS_ON_AND_OFF || readMode == QTR_EMITTERS_OFF)
{
calibrateOnOrOff(&calibratedMinimumOff,
&calibratedMaximumOff,
QTR_EMITTERS_OFF);
}
}
void QTRSensors::calibrateOnOrOff(unsigned int **calibratedMinimum,
unsigned int **calibratedMaximum,
unsigned char readMode)
{
int i;
unsigned int sensor_values[16];
unsigned int max_sensor_values[16];
unsigned int min_sensor_values[16];
// Allocate the arrays if necessary.
if(*calibratedMaximum == 0)
{
*calibratedMaximum = (unsigned int*)malloc(sizeof(unsigned int)*_numSensors);
// If the malloc failed, don't continue.
if(*calibratedMaximum == 0)
return;
// Initialize the max and min calibrated values to values that
// will cause the first reading to update them.
for(i=0;i<_numSensors;i++)
(*calibratedMaximum)[i] = 0;
}
if(*calibratedMinimum == 0)
{
*calibratedMinimum = (unsigned int*)malloc(sizeof(unsigned int)*_numSensors);
// If the malloc failed, don't continue.
if(*calibratedMinimum == 0)
return;
for(i=0;i<_numSensors;i++)
(*calibratedMinimum)[i] = _maxValue;
}
int j;
for(j=0;j<10;j++)
{
read(sensor_values,readMode);
for(i=0;i<_numSensors;i++)
{
// set the max we found THIS time
if(j == 0 || max_sensor_values[i] < sensor_values[i])
max_sensor_values[i] = sensor_values[i];
// set the min we found THIS time
if(j == 0 || min_sensor_values[i] > sensor_values[i])
min_sensor_values[i] = sensor_values[i];
}
}
// record the min and max calibration values
for(i=0;i<_numSensors;i++)
{
if(min_sensor_values[i] > (*calibratedMaximum)[i])
(*calibratedMaximum)[i] = min_sensor_values[i];
if(max_sensor_values[i] < (*calibratedMinimum)[i])
(*calibratedMinimum)[i] = max_sensor_values[i];
}
}
// Returns values calibrated to a value between 0 and 1000, where
// 0 corresponds to the minimum value read by calibrate() and 1000
// corresponds to the maximum value. Calibration values are
// stored separately for each sensor, so that differences in the
// sensors are accounted for automatically.
void QTRSensors::readCalibrated(unsigned int *sensor_values, unsigned char readMode)
{
int i;
// if not calibrated, do nothing
if(readMode == QTR_EMITTERS_ON_AND_OFF || readMode == QTR_EMITTERS_OFF)
if(!calibratedMinimumOff || !calibratedMaximumOff)
return;
if(readMode == QTR_EMITTERS_ON_AND_OFF || readMode == QTR_EMITTERS_ON)
if(!calibratedMinimumOn || !calibratedMaximumOn)
return;
// read the needed values
read(sensor_values,readMode);
for(i=0;i<_numSensors;i++)
{
unsigned int calmin,calmax;
unsigned int denominator;
// find the correct calibration
if(readMode == QTR_EMITTERS_ON)
{
calmax = calibratedMaximumOn[i];
calmin = calibratedMinimumOn[i];
}
else if(readMode == QTR_EMITTERS_OFF)
{
calmax = calibratedMaximumOff[i];
calmin = calibratedMinimumOff[i];
}
else // QTR_EMITTERS_ON_AND_OFF
{
if(calibratedMinimumOff[i] < calibratedMinimumOn[i]) // no meaningful signal
calmin = _maxValue;
else
calmin = calibratedMinimumOn[i] + _maxValue - calibratedMinimumOff[i]; // this won't go past _maxValue
if(calibratedMaximumOff[i] < calibratedMaximumOn[i]) // no meaningful signal
calmax = _maxValue;
else
calmax = calibratedMaximumOn[i] + _maxValue - calibratedMaximumOff[i]; // this won't go past _maxValue
}
denominator = calmax - calmin;
signed int x = 0;
if(denominator != 0)
x = (((signed long)sensor_values[i]) - calmin)
* 1000 / denominator;
if(x < 0)
x = 0;
else if(x > 1000)
x = 1000;
sensor_values[i] = x;
}
}
// Operates the same as read calibrated, but also returns an
// estimated position of the robot with respect to a line. The
// estimate is made using a weighted average of the sensor indices
// multiplied by 1000, so that a return value of 0 indicates that
// the line is directly below sensor 0, a return value of 1000
// indicates that the line is directly below sensor 1, 2000
// indicates that it's below sensor 2000, etc. Intermediate
// values indicate that the line is between two sensors. The
// formula is:
//
// 0*value0 + 1000*value1 + 2000*value2 + ...
// --------------------------------------------
// value0 + value1 + value2 + ...
//
// By default, this function assumes a dark line (high values)
// surrounded by white (low values). If your line is light on
// black, set the optional second argument white_line to true. In
// this case, each sensor value will be replaced by (1000-value)
// before the averaging.
int QTRSensors::readLine(unsigned int *sensor_values,
unsigned char readMode, unsigned char white_line)
{
unsigned char i, on_line = 0;
unsigned long avg; // this is for the weighted total, which is long
// before division
unsigned int sum; // this is for the denominator which is <= 64000
static int last_value=0; // assume initially that the line is left.
readCalibrated(sensor_values, readMode);
avg = 0;
sum = 0;
for(i=0;i<_numSensors;i++) {
int value = sensor_values[i];
if(white_line)
value = 1000-value;
// keep track of whether we see the line at all
if(value > 200) {
on_line = 1;
}
// only average in values that are above a noise threshold
if(value > 50) {
avg += (long)(value) * (i * 1000);
sum += value;
}
}
if(!on_line)
{
// If it last read to the left of center, return 0.
if(last_value < (_numSensors-1)*1000/2)
return 0;
// If it last read to the right of center, return the max.
else
return (_numSensors-1)*1000;
}
last_value = avg/sum;
return last_value;
}
// Derived RC class constructors
QTRSensorsRC::QTRSensorsRC()
{
calibratedMinimumOn = 0;
calibratedMaximumOn = 0;
calibratedMinimumOff = 0;
calibratedMaximumOff = 0;
_pins = 0;
}
QTRSensorsRC::QTRSensorsRC(unsigned char* pins,
unsigned char numSensors, unsigned int timeout, unsigned char emitterPin)
{
calibratedMinimumOn = 0;
calibratedMaximumOn = 0;
calibratedMinimumOff = 0;
calibratedMaximumOff = 0;
_pins = 0;
init(pins, numSensors, timeout, emitterPin);
}
// The array 'pins' contains the Arduino pin number for each sensor.
// 'numSensors' specifies the length of the 'pins' array (i.e. the
// number of QTR-RC sensors you are using). numSensors must be
// no greater than 16.
// 'timeout' specifies the length of time in microseconds beyond
// which you consider the sensor reading completely black. That is to say,
// if the pulse length for a pin exceeds 'timeout', pulse timing will stop
// and the reading for that pin will be considered full black.
// It is recommended that you set timeout to be between 1000 and
// 3000 us, depending on things like the height of your sensors and
// ambient lighting. Using timeout allows you to shorten the
// duration of a sensor-reading cycle while still maintaining
// useful analog measurements of reflectance
// 'emitterPin' is the Arduino pin that controls the IR LEDs on the 8RC
// modules. If you are using a 1RC (i.e. if there is no emitter pin),
// or if you just want the emitters on all the time and don't want to
// use an I/O pin to control it, use a value of 255 (QTR_NO_EMITTER_PIN).
void QTRSensorsRC::init(unsigned char* pins,
unsigned char numSensors, unsigned int timeout, unsigned char emitterPin)
{
QTRSensors::init(pins, numSensors, emitterPin, QTR_RC);
_maxValue = timeout;
}
// Reads the sensor values into an array. There *MUST* be space
// for as many values as there were sensors specified in the constructor.
// Example usage:
// unsigned int sensor_values[8];
// sensors.read(sensor_values);
// ...
// The values returned are in microseconds and range from 0 to
// timeout (as specified in the constructor).
void QTRSensorsRC::readPrivate(unsigned int *sensor_values)
{
unsigned char i;
if (_pins == 0)
return;
for(i = 0; i < _numSensors; i++)
{
sensor_values[i] = _maxValue;
digitalWrite(_pins[i], HIGH); // make sensor line an output
pinMode(_pins[i], OUTPUT); // drive sensor line high
}
delayMicroseconds(10); // charge lines for 10 us
for(i = 0; i < _numSensors; i++)
{
pinMode(_pins[i], INPUT); // make sensor line an input
digitalWrite(_pins[i], LOW); // important: disable internal pull-up!
}
unsigned long startTime = micros();
while (micros() - startTime < _maxValue)
{
unsigned int time = micros() - startTime;
for (i = 0; i < _numSensors; i++)
{
if (digitalRead(_pins[i]) == LOW && time < sensor_values[i])
sensor_values[i] = time;
}
}
}
// Derived Analog class constructors
QTRSensorsAnalog::QTRSensorsAnalog()
{
calibratedMinimumOn = 0;
calibratedMaximumOn = 0;
calibratedMinimumOff = 0;
calibratedMaximumOff = 0;
_pins = 0;
}
QTRSensorsAnalog::QTRSensorsAnalog(unsigned char* pins,
unsigned char numSensors, unsigned char numSamplesPerSensor,
unsigned char emitterPin)
{
calibratedMinimumOn = 0;
calibratedMaximumOn = 0;
calibratedMinimumOff = 0;
calibratedMaximumOff = 0;
_pins = 0;
init(pins, numSensors, numSamplesPerSensor, emitterPin);
}
// the array 'pins' contains the Arduino analog pin assignment for each
// sensor. For example, if pins is {0, 1, 7}, sensor 1 is on
// Arduino analog input 0, sensor 2 is on Arduino analog input 1,
// and sensor 3 is on Arduino analog input 7.
// 'numSensors' specifies the length of the 'analogPins' array (i.e. the
// number of QTR-A sensors you are using). numSensors must be
// no greater than 16.
// 'numSamplesPerSensor' indicates the number of 10-bit analog samples
// to average per channel (i.e. per sensor) for each reading. The total
// number of analog-to-digital conversions performed will be equal to
// numSensors*numSamplesPerSensor. Note that it takes about 100 us to
// perform a single analog-to-digital conversion, so:
// if numSamplesPerSensor is 4 and numSensors is 6, it will take
// 4 * 6 * 100 us = ~2.5 ms to perform a full readLine().
// Increasing this parameter increases noise suppression at the cost of
// sample rate. The recommended value is 4.
// 'emitterPin' is the Arduino pin that controls the IR LEDs on the 8RC
// modules. If you are using a 1RC (i.e. if there is no emitter pin),
// or if you just want the emitters on all the time and don't want to
// use an I/O pin to control it, use a value of 255 (QTR_NO_EMITTER_PIN).
void QTRSensorsAnalog::init(unsigned char* pins,
unsigned char numSensors, unsigned char numSamplesPerSensor,
unsigned char emitterPin)
{
QTRSensors::init(pins, numSensors, emitterPin, QTR_A);
_numSamplesPerSensor = numSamplesPerSensor;
_maxValue = 1023; // this is the maximum returned by the A/D conversion
}
// Reads the sensor values into an array. There *MUST* be space
// for as many values as there were sensors specified in the constructor.
// Example usage:
// unsigned int sensor_values[8];
// sensors.read(sensor_values);
// The values returned are a measure of the reflectance in terms of a
// 10-bit ADC average with higher values corresponding to lower
// reflectance (e.g. a black surface or a void).
void QTRSensorsAnalog::readPrivate(unsigned int *sensor_values)
{
unsigned char i, j;
if (_pins == 0)
return;
// reset the values
for(i = 0; i < _numSensors; i++)
sensor_values[i] = 0;
for (j = 0; j < _numSamplesPerSensor; j++)
{
for (i = 0; i < _numSensors; i++)
{
sensor_values[i] += analogRead(_pins[i]); // add the conversion result
}
}
// get the rounded average of the readings for each sensor
for (i = 0; i < _numSensors; i++)
sensor_values[i] = (sensor_values[i] + (_numSamplesPerSensor >> 1)) /
_numSamplesPerSensor;
}
// the destructor frees up allocated memory
QTRSensors::~QTRSensors()
{
if (_pins)
free(_pins);
if(calibratedMaximumOn)
free(calibratedMaximumOn);
if(calibratedMaximumOff)
free(calibratedMaximumOff);
if(calibratedMinimumOn)
free(calibratedMinimumOn);
if(calibratedMinimumOff)
free(calibratedMinimumOff);
}

View file

@ -0,0 +1,282 @@
/*
QTRSensors.h - Library for using Pololu QTR reflectance
sensors and reflectance sensor arrays: QTR-1A, QTR-8A, QTR-1RC, and
QTR-8RC. The object used will determine the type of the sensor (either
QTR-xA or QTR-xRC). Then simply specify in the constructor which
Arduino I/O pins are connected to a QTR sensor, and the read() method
will obtain reflectance measurements for those sensors. Smaller sensor
values correspond to higher reflectance (e.g. white) while larger
sensor values correspond to lower reflectance (e.g. black or a void).
* QTRSensorsRC should be used for QTR-1RC and QTR-8RC sensors.
* QTRSensorsAnalog should be used for QTR-1A and QTR-8A sensors.
*/
/*
* Written by Ben Schmidel et al., October 4, 2010
* Copyright (c) 2008-2012 Pololu Corporation. For more information, see
*
* http://www.pololu.com
* http://forum.pololu.com
* http://www.pololu.com/docs/0J19
*
* You may freely modify and share this code, as long as you keep this
* notice intact (including the two links above). Licensed under the
* Creative Commons BY-SA 3.0 license:
*
* http://creativecommons.org/licenses/by-sa/3.0/
*
* Disclaimer: To the extent permitted by law, Pololu provides this work
* without any warranty. It might be defective, in which case you agree
* to be responsible for all resulting costs and damages.
*/
#ifndef QTRSensors_h
#define QTRSensors_h
#define QTR_EMITTERS_OFF 0
#define QTR_EMITTERS_ON 1
#define QTR_EMITTERS_ON_AND_OFF 2
#define QTR_NO_EMITTER_PIN 255
#define QTR_MAX_SENSORS 16
// This class cannot be instantiated directly (it has no constructor).
// Instead, you should instantiate one of its two derived classes (either the
// QTR-A or QTR-RC version, depending on the type of your sensor).
class QTRSensors
{
public:
// Reads the sensor values into an array. There *MUST* be space
// for as many values as there were sensors specified in the constructor.
// Example usage:
// unsigned int sensor_values[8];
// sensors.read(sensor_values);
// The values returned are a measure of the reflectance in abstract units,
// with higher values corresponding to lower reflectance (e.g. a black
// surface or a void).
// If measureOffAndOn is true, measures the values with the
// emitters on AND off and returns on - (timeout - off). If this
// value is less than zero, it returns zero.
// This method will call the appropriate derived class' readPrivate(), as
// determined by the _type data member. Making this method virtual
// leads to compiler warnings, which is why this alternate approach was
// taken.
void read(unsigned int *sensor_values, unsigned char readMode = QTR_EMITTERS_ON);
// Turn the IR LEDs off and on. This is mainly for use by the
// read method, and calling these functions before or
// after the reading the sensors will have no effect on the
// readings, but you may wish to use these for testing purposes.
void emittersOff();
void emittersOn();
// Reads the sensors for calibration. The sensor values are
// not returned; instead, the maximum and minimum values found
// over time are stored internally and used for the
// readCalibrated() method.
void calibrate(unsigned char readMode = QTR_EMITTERS_ON);
// Resets all calibration that has been done.
void resetCalibration();
// Returns values calibrated to a value between 0 and 1000, where
// 0 corresponds to the minimum value read by calibrate() and 1000
// corresponds to the maximum value. Calibration values are
// stored separately for each sensor, so that differences in the
// sensors are accounted for automatically.
void readCalibrated(unsigned int *sensor_values, unsigned char readMode = QTR_EMITTERS_ON);
// Operates the same as read calibrated, but also returns an
// estimated position of the robot with respect to a line. The
// estimate is made using a weighted average of the sensor indices
// multiplied by 1000, so that a return value of 0 indicates that
// the line is directly below sensor 0, a return value of 1000
// indicates that the line is directly below sensor 1, 2000
// indicates that it's below sensor 2000, etc. Intermediate
// values indicate that the line is between two sensors. The
// formula is:
//
// 0*value0 + 1000*value1 + 2000*value2 + ...
// --------------------------------------------
// value0 + value1 + value2 + ...
//
// By default, this function assumes a dark line (high values)
// surrounded by white (low values). If your line is light on
// black, set the optional second argument white_line to true. In
// this case, each sensor value will be replaced by (1000-value)
// before the averaging.
int readLine(unsigned int *sensor_values, unsigned char readMode = QTR_EMITTERS_ON, unsigned char white_line = 0);
// Calibrated minumum and maximum values. These start at 1000 and
// 0, respectively, so that the very first sensor reading will
// update both of them.
//
// The pointers are unallocated until calibrate() is called, and
// then allocated to exactly the size required. Depending on the
// readMode argument to calibrate, only the On or Off values may
// be allocated, as required.
//
// These variables are made public so that you can use them for
// your own calculations and do things like saving the values to
// EEPROM, performing sanity checking, etc.
unsigned int *calibratedMinimumOn;
unsigned int *calibratedMaximumOn;
unsigned int *calibratedMinimumOff;
unsigned int *calibratedMaximumOff;
~QTRSensors();
protected:
QTRSensors()
{
};
void init(unsigned char *pins, unsigned char numSensors, unsigned char emitterPin,
unsigned char type);
unsigned char *_pins;
unsigned char _numSensors;
unsigned char _emitterPin;
unsigned int _maxValue; // the maximum value returned by this function
private:
unsigned char _type; // the type of the derived class (QTR_RC
// or QTR_A)
// Handles the actual calibration. calibratedMinimum and
// calibratedMaximum are pointers to the requested calibration
// arrays, which will be allocated if necessary.
void calibrateOnOrOff(unsigned int **calibratedMinimum,
unsigned int **calibratedMaximum,
unsigned char readMode);
};
// Object to be used for QTR-1RC and QTR-8RC sensors
class QTRSensorsRC : public QTRSensors
{
// allows the base QTRSensors class to access this class'
// readPrivate()
friend class QTRSensors;
public:
// if this constructor is used, the user must call init() before using
// the methods in this class
QTRSensorsRC();
// this constructor just calls init()
QTRSensorsRC(unsigned char* pins, unsigned char numSensors,
unsigned int timeout = 4000, unsigned char emitterPin = 255);
// The array 'pins' contains the Arduino pin number for each sensor.
// 'numSensors' specifies the length of the 'pins' array (i.e. the
// number of QTR-RC sensors you are using). numSensors must be
// no greater than 16.
// 'timeout' specifies the length of time in microseconds beyond
// which you consider the sensor reading completely black. That is to say,
// if the pulse length for a pin exceeds 'timeout', pulse timing will stop
// and the reading for that pin will be considered full black.
// It is recommended that you set timeout to be between 1000 and
// 3000 us, depending on things like the height of your sensors and
// ambient lighting. Using timeout allows you to shorten the
// duration of a sensor-reading cycle while still maintaining
// useful analog measurements of reflectance
// 'emitterPin' is the Arduino pin that controls the IR LEDs on the 8RC
// modules. If you are using a 1RC (i.e. if there is no emitter pin),
// or if you just want the emitters on all the time and don't want to
// use an I/O pin to control it, use a value of 255 (QTR_NO_EMITTER_PIN).
void init(unsigned char* pins, unsigned char numSensors,
unsigned int timeout = 2000, unsigned char emitterPin = QTR_NO_EMITTER_PIN);
private:
// Reads the sensor values into an array. There *MUST* be space
// for as many values as there were sensors specified in the constructor.
// Example usage:
// unsigned int sensor_values[8];
// sensors.read(sensor_values);
// The values returned are a measure of the reflectance in microseconds.
void readPrivate(unsigned int *sensor_values);
};
// Object to be used for QTR-1A and QTR-8A sensors
class QTRSensorsAnalog : public QTRSensors
{
// allows the base QTRSensors class to access this class
// readPrivate()
friend class QTRSensors;
public:
// if this constructor is used, the user must call init() before using
// the methods in this class
QTRSensorsAnalog();
// this constructor just calls init()
QTRSensorsAnalog(unsigned char* pins,
unsigned char numSensors, unsigned char numSamplesPerSensor = 4,
unsigned char emitterPin = 255);
// the array 'pins' contains the Arduino analog pin assignment for each
// sensor. For example, if pins is {0, 1, 7}, sensor 1 is on
// Arduino analog input 0, sensor 2 is on Arduino analog input 1,
// and sensor 3 is on Arduino analog input 7.
// 'numSensors' specifies the length of the 'analogPins' array (i.e. the
// number of QTR-A sensors you are using). numSensors must be
// no greater than 16.
// 'numSamplesPerSensor' indicates the number of 10-bit analog samples
// to average per channel (i.e. per sensor) for each reading. The total
// number of analog-to-digital conversions performed will be equal to
// numSensors*numSamplesPerSensor. Note that it takes about 100 us to
// perform a single analog-to-digital conversion, so:
// if numSamplesPerSensor is 4 and numSensors is 6, it will take
// 4 * 6 * 100 us = ~2.5 ms to perform a full readLine().
// Increasing this parameter increases noise suppression at the cost of
// sample rate. The recommended value is 4.
// 'emitterPin' is the Arduino pin that controls the IR LEDs on the 8RC
// modules. If you are using a 1RC (i.e. if there is no emitter pin),
// or if you just want the emitters on all the time and don't want to
// use an I/O pin to control it, use a value of 255 (QTR_NO_EMITTER_PIN).
void init(unsigned char* analogPins, unsigned char numSensors,
unsigned char numSamplesPerSensor = 4, unsigned char emitterPin = QTR_NO_EMITTER_PIN);
private:
// Reads the sensor values into an array. There *MUST* be space
// for as many values as there were sensors specified in the constructor.
// Example usage:
// unsigned int sensor_values[8];
// sensors.read(sensor_values);
// The values returned are a measure of the reflectance in terms of a
// 10-bit ADC average with higher values corresponding to lower
// reflectance (e.g. a black surface or a void).
void readPrivate(unsigned int *sensor_values);
private:
unsigned char _numSamplesPerSensor;
};
#endif

View file

@ -0,0 +1,91 @@
#include <QTRSensors.h>
// This example is designed for use with six QTR-1A sensors or the first six sensors of a
// QTR-8A module. These reflectance sensors should be connected to analog inputs 0 to 5.
// The QTR-8A's emitter control pin (LEDON) can optionally be connected to digital pin 2,
// or you can leave it disconnected and change the EMITTER_PIN #define below from 2 to
// QTR_NO_EMITTER_PIN.
// The setup phase of this example calibrates the sensor for ten seconds and turns on
// the LED built in to the Arduino on pin 13 while calibration is going on.
// During this phase, you should expose each reflectance sensor to the lightest and
// darkest readings they will encounter.
// For example, if you are making a line follower, you should slide the sensors across the
// line during the calibration phase so that each sensor can get a reading of how dark the
// line is and how light the ground is. Improper calibration will result in poor readings.
// If you want to skip the calibration phase, you can get the raw sensor readings
// (analog voltage readings from 0 to 1023) by calling qtra.read(sensorValues) instead of
// qtra.readLine(sensorValues).
// The main loop of the example reads the calibrated sensor values and uses them to
// estimate the position of a line. You can test this by taping a piece of 3/4" black
// electrical tape to a piece of white paper and sliding the sensor across it. It
// prints the sensor values to the serial monitor as numbers from 0 (maximum reflectance)
// to 1000 (minimum reflectance) followed by the estimated location of the line as a number
// from 0 to 5000. 1000 means the line is directly under sensor 1, 2000 means directly
// under sensor 2, etc. 0 means the line is directly under sensor 0 or was last seen by
// sensor 0 before being lost. 5000 means the line is directly under sensor 5 or was
// last seen by sensor 5 before being lost.
#define NUM_SENSORS 6 // number of sensors used
#define NUM_SAMPLES_PER_SENSOR 4 // average 4 analog samples per sensor reading
#define EMITTER_PIN 2 // emitter is controlled by digital pin 2
// sensors 0 through 5 are connected to analog inputs 0 through 5, respectively
QTRSensorsAnalog qtra((unsigned char[]) {0, 1, 2, 3, 4, 5},
NUM_SENSORS, NUM_SAMPLES_PER_SENSOR, EMITTER_PIN);
unsigned int sensorValues[NUM_SENSORS];
void setup()
{
delay(500);
pinMode(13, OUTPUT);
digitalWrite(13, HIGH); // turn on Arduino's LED to indicate we are in calibration mode
for (int i = 0; i < 400; i++) // make the calibration take about 10 seconds
{
qtra.calibrate(); // reads all sensors 10 times at 2.5 ms per six sensors (i.e. ~25 ms per call)
}
digitalWrite(13, LOW); // turn off Arduino's LED to indicate we are through with calibration
// print the calibration minimum values measured when emitters were on
Serial.begin(9600);
for (int i = 0; i < NUM_SENSORS; i++)
{
Serial.print(qtra.calibratedMinimumOn[i]);
Serial.print(' ');
}
Serial.println();
// print the calibration maximum values measured when emitters were on
for (int i = 0; i < NUM_SENSORS; i++)
{
Serial.print(qtra.calibratedMaximumOn[i]);
Serial.print(' ');
}
Serial.println();
Serial.println();
delay(1000);
}
void loop()
{
// read calibrated sensor values and obtain a measure of the line position from 0 to 5000
// To get raw sensor values, call:
// qtra.read(sensorValues); instead of unsigned int position = qtra.readLine(sensorValues);
unsigned int position = qtra.readLine(sensorValues);
// print the sensor values as numbers from 0 to 1000, where 0 means maximum reflectance and
// 1000 means minimum reflectance, followed by the line position
for (unsigned char i = 0; i < NUM_SENSORS; i++)
{
Serial.print(sensorValues[i]);
Serial.print('\t');
}
//Serial.println(); // uncomment this line if you are using raw values
Serial.println(position); // comment this line out if you are using raw values
delay(250);
}

View file

@ -0,0 +1,48 @@
#include <QTRSensors.h>
// This example is designed for use with six QTR-1A sensors or the first six sensors of a
// QTR-8A module. These reflectance sensors should be connected to analog inputs 0 to 5.
// The QTR-8A's emitter control pin (LEDON) can optionally be connected to digital pin 2,
// or you can leave it disconnected and change the EMITTER_PIN #define below from 2 to
// QTR_NO_EMITTER_PIN.
// The main loop of the example reads the raw sensor values (uncalibrated).
// You can test this by taping a piece of 3/4" black electrical tape to a piece of white
// paper and sliding the sensor across it. It prints the sensor values to the serial
// monitor as numbers from 0 (maximum reflectance) to 1023 (minimum reflectance).
#define NUM_SENSORS 6 // number of sensors used
#define NUM_SAMPLES_PER_SENSOR 4 // average 4 analog samples per sensor reading
#define EMITTER_PIN 2 // emitter is controlled by digital pin 2
// sensors 0 through 5 are connected to analog inputs 0 through 5, respectively
QTRSensorsAnalog qtra((unsigned char[]) {0, 1, 2, 3, 4, 5},
NUM_SENSORS, NUM_SAMPLES_PER_SENSOR, EMITTER_PIN);
unsigned int sensorValues[NUM_SENSORS];
void setup()
{
delay(500);
Serial.begin(9600); // set the data rate in bits per second for serial data transmission
delay(1000);
}
void loop()
{
// read raw sensor values
qtra.read(sensorValues);
// print the sensor values as numbers from 0 to 1023, where 0 means maximum reflectance and
// 1023 means minimum reflectance
for (unsigned char i = 0; i < NUM_SENSORS; i++)
{
Serial.print(sensorValues[i]);
Serial.print('\t'); // tab to format the raw data into columns in the Serial monitor
}
Serial.println();
delay(250);
}

View file

@ -0,0 +1,91 @@
#include <QTRSensors.h>
// This example is designed for use with eight QTR-1RC sensors or the eight sensors of a
// QTR-8RC module. These reflectance sensors should be connected to digital inputs 3 to 10.
// The QTR-8RC's emitter control pin (LEDON) can optionally be connected to digital pin 2,
// or you can leave it disconnected and change the EMITTER_PIN #define below from 2 to
// QTR_NO_EMITTER_PIN.
// The setup phase of this example calibrates the sensor for ten seconds and turns on
// the LED built in to the Arduino on pin 13 while calibration is going on.
// During this phase, you should expose each reflectance sensor to the lightest and
// darkest readings they will encounter.
// For example, if you are making a line follower, you should slide the sensors across the
// line during the calibration phase so that each sensor can get a reading of how dark the
// line is and how light the ground is. Improper calibration will result in poor readings.
// If you want to skip the calibration phase, you can get the raw sensor readings
// (pulse times from 0 to 2500 us) by calling qtrrc.read(sensorValues) instead of
// qtrrc.readLine(sensorValues).
// The main loop of the example reads the calibrated sensor values and uses them to
// estimate the position of a line. You can test this by taping a piece of 3/4" black
// electrical tape to a piece of white paper and sliding the sensor across it. It
// prints the sensor values to the serial monitor as numbers from 0 (maximum reflectance)
// to 1000 (minimum reflectance) followed by the estimated location of the line as a number
// from 0 to 5000. 1000 means the line is directly under sensor 1, 2000 means directly
// under sensor 2, etc. 0 means the line is directly under sensor 0 or was last seen by
// sensor 0 before being lost. 5000 means the line is directly under sensor 5 or was
// last seen by sensor 5 before being lost.
#define NUM_SENSORS 8 // number of sensors used
#define TIMEOUT 2500 // waits for 2500 microseconds for sensor outputs to go low
#define EMITTER_PIN 2 // emitter is controlled by digital pin 2
// sensors 0 through 7 are connected to digital pins 3 through 10, respectively
QTRSensorsRC qtrrc((unsigned char[]) {3, 4, 5, 6, 7, 8, 9, 10},
NUM_SENSORS, TIMEOUT, EMITTER_PIN);
unsigned int sensorValues[NUM_SENSORS];
void setup()
{
delay(500);
pinMode(13, OUTPUT);
digitalWrite(13, HIGH); // turn on Arduino's LED to indicate we are in calibration mode
for (int i = 0; i < 400; i++) // make the calibration take about 10 seconds
{
qtrrc.calibrate(); // reads all sensors 10 times at 2500 us per read (i.e. ~25 ms per call)
}
digitalWrite(13, LOW); // turn off Arduino's LED to indicate we are through with calibration
// print the calibration minimum values measured when emitters were on
Serial.begin(9600);
for (int i = 0; i < NUM_SENSORS; i++)
{
Serial.print(qtrrc.calibratedMinimumOn[i]);
Serial.print(' ');
}
Serial.println();
// print the calibration maximum values measured when emitters were on
for (int i = 0; i < NUM_SENSORS; i++)
{
Serial.print(qtrrc.calibratedMaximumOn[i]);
Serial.print(' ');
}
Serial.println();
Serial.println();
delay(1000);
}
void loop()
{
// read calibrated sensor values and obtain a measure of the line position from 0 to 5000
// To get raw sensor values, call:
// qtrrc.read(sensorValues); instead of unsigned int position = qtrrc.readLine(sensorValues);
unsigned int position = qtrrc.readLine(sensorValues);
// print the sensor values as numbers from 0 to 1000, where 0 means maximum reflectance and
// 1000 means minimum reflectance, followed by the line position
for (unsigned char i = 0; i < NUM_SENSORS; i++)
{
Serial.print(sensorValues[i]);
Serial.print('\t');
}
//Serial.println(); // uncomment this line if you are using raw values
Serial.println(position); // comment this line out if you are using raw values
delay(250);
}

View file

@ -0,0 +1,48 @@
#include <QTRSensors.h>
// This example is designed for use with eight QTR-1RC sensors or the eight sensors of a
// QTR-8RC module. These reflectance sensors should be connected to digital inputs 3 to 10.
// The QTR-8RC's emitter control pin (LEDON) can optionally be connected to digital pin 2,
// or you can leave it disconnected and change the EMITTER_PIN #define below from 2 to
// QTR_NO_EMITTER_PIN.
// The main loop of the example reads the raw sensor values (uncalibrated).
// You can test this by taping a piece of 3/4" black electrical tape to a piece of white
// paper and sliding the sensor across it. It prints the sensor values to the serial
// monitor as numbers from 0 (maximum reflectance) to 2500 (minimum reflectance).
#define NUM_SENSORS 8 // number of sensors used
#define TIMEOUT 2500 // waits for 2500 microseconds for sensor outputs to go low
#define EMITTER_PIN 2 // emitter is controlled by digital pin 2
// sensors 0 through 7 are connected to digital pins 3 through 10, respectively
QTRSensorsRC qtrrc((unsigned char[]) {3, 4, 5, 6, 7, 8, 9, 10},
NUM_SENSORS, TIMEOUT, EMITTER_PIN);
unsigned int sensorValues[NUM_SENSORS];
void setup()
{
delay(500);
Serial.begin(9600); // set the data rate in bits per second for serial data transmission
delay(1000);
}
void loop()
{
// read raw sensor values
qtrrc.read(sensorValues);
// print the sensor values as numbers from 0 to 2500, where 0 means maximum reflectance and
// 1023 means minimum reflectance
for (unsigned char i = 0; i < NUM_SENSORS; i++)
{
Serial.print(sensorValues[i]);
Serial.print('\t'); // tab to format the raw data into columns in the Serial monitor
}
Serial.println();
delay(250);
}

View file

@ -0,0 +1,36 @@
#######################################
# Syntax Coloring Map QTRSensors
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
QTRSensorsAnalog KEYWORD1
QTRSensorsRC KEYWORD1
QTRSensors KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
read KEYWORD2
emittersOff KEYWORD2
emittersOn KEYWORD2
calibrate KEYWORD2
readCalibrated KEYWORD2
readLine KEYWORD2
calibratedMinimumOn KEYWORD2
calibratedMaximumOn KEYWORD2
calibratedMinimumOff KEYWORD2
calibratedMaximumOff KEYWORD2
init KEYWORD2
#######################################
# Constants (LITERAL1)
#######################################
QTR_EMITTERS_OFF LITERAL1
QTR_EMITTERS_ON LITERAL1
QTR_EMITTERS_ON_AND_OFF LITERAL1
QTR_NO_EMITTER_PIN LITERAL1